ثلاثة أشهر الحركة من المتوسط الطلب ، توقعات
أور-نوتس عبارة عن سلسلة من الملاحظات التمهيدية حول الموضوعات التي تقع تحت عنوان واسع من مجال بحوث العمليات (أور). كانوا يستخدمون أصلا من قبل لي في تمهيدية أو بالطبع أعطي في كلية إمبريال. وهي متاحة الآن للاستخدام من قبل أي طالب والمعلمين المهتمين في أو تخضع للشروط التالية. يمكن العثور على قائمة كاملة بالموضوعات المتوفرة في أور-نوتس هنا. أمثلة للتنبؤ التنبؤ مثال عام 1996 امتحان أوغ ويظهر الطلب على منتج في كل من الأشهر الخمسة الماضية أدناه. استخدام المتوسط المتحرك لمدة شهرين لتوليد توقعات للطلب في الشهر 6. تطبيق تمهيد الأسي مع ثابت تمهيد من 0.9 لتوليد توقعات للطلب على الطلب في الشهر 6. أي من هذين التنبؤين تفضل ولماذا تتحرك الشهرين متوسط لشهرين إلى خمسة تعطى من قبل: التوقعات للشهر السادس هو مجرد المتوسط المتحرك للشهر قبل ذلك أي المتوسط المتحرك للشهر 5 م 5 2350. تطبيق تمهيد الأسي مع ثابت تمهيد من 0.9 نحصل على: كما كان من قبل فإن توقعات الشهر السادس هي مجرد المتوسط للشهر 5 M 5 2386 لمقارنة التوقعين نحسب متوسط الانحراف التربيعي (مسد). إذا قمنا بذلك نجد أنه بالنسبة للمتوسط المتحرك مسد (15 - 19) sup2 (18 - 23) sup2 (21 - 24) sup23 16.67 وبالنسبة للمتوسط الملمس أضعافا مع ثابت التمهيد 0.9 مسد (13-17) sup2 (16.60 - 19) sup2 (18.76 - 23) sup2 (22.58 - 24) sup24 10.44 وبشكل عام نرى أن التمهيد الأسي يبدو أنه يعطي أفضل التوقعات قبل شهر واحد حيث أن لديه مسد أقل. وبالتالي نحن نفضل توقعات 2386 التي تم إنتاجها من قبل التمهيد الأسي. التنبؤ مثال 1994 امتحان أوغ ويبين الجدول أدناه الطلب على ما بعد البيع الجديد في متجر لكل من الأشهر ال 7 الماضية. احسب المتوسط المتحرك لمدة شهرين لمدة شهرين إلى سبعة. ماذا سيكون توقعاتك للطلب في الشهر الثامن تطبيق التمهيد الأسي مع ثابت التمهيد من 0.1 لاستخلاص توقعات للطلب في الشهر الثامن. أي من التنبؤين في الشهر الثامن تفضلون ولماذا يعتقد حارس متجر أن العملاء يتحولون إلى هذا الجديد بعد البيع من العلامات التجارية الأخرى. ناقش كيف يمكنك نموذج سلوك التحويل هذا وبيان البيانات التي ستحتاجها لتأكيد ما إذا كان هذا التحويل يحدث أم لا. ويعطى المتوسط المتحرك لشهرين إلى سبعة أشهر من قبل: التوقعات لشهر الثامن هو مجرد المتوسط المتحرك للشهر قبل ذلك أي المتوسط المتحرك لشهر 7 م 7 46. تطبيق تمهيد الأسي مع ثابت تمهيد من 0.1 نحن الحصول على: كما هو الحال قبل توقعات الشهر الثامن هو مجرد المتوسط للشهر 7 M 7 31.11 31 (كما أننا لا يمكن أن يكون الطلب كسور). لمقارنة اثنين من التوقعات نحسب متوسط الانحراف التربيعي (مسد). إذا قمنا بذلك نجد أنه بالنسبة للمتوسط المتحرك والمتوسط السلس المتوسط مع ثابت التمهيد 0.1 بشكل عام فإننا نرى أن المتوسط المتحرك لشهرين يبدو أنه يعطي أفضل التوقعات قبل شهر واحد حيث أن لديه مسد أقل. وبالتالي فإننا نفضل توقعات 46 التي تم إنتاجها من قبل المتوسط المتحرك لمدة شهرين. لفحص التحول سنحتاج إلى استخدام نموذج عملية ماركوف، حيث الدول العلامات التجارية، ونحن بحاجة إلى معلومات الحالة الأولية واحتمالات التحول العملاء (من الدراسات الاستقصائية). نحن بحاجة إلى تشغيل النموذج على البيانات التاريخية لمعرفة ما إذا كان لدينا تناسب بين النموذج والسلوك التاريخي. التنبؤ مثال 1992 امتحان أوغ ويبين الجدول أدناه الطلب على علامة تجارية معينة من الحلاقة في متجر لكل من الأشهر التسعة الماضية. احسب المتوسط المتحرك لمدة ثلاثة أشهر للأشهر من 3 إلى 9. ما هي توقعاتك للطلب في الشهر العاشر تطبيق التجانس الأسي مع ثابت التمهيد 0.3 لاستخلاص توقعات للطلب في الشهر العاشر. أي من التنبؤين للشهر العشر تفضلون ولماذا يعطى المتوسط المتحرك لمدة ثلاثة أشهر للأشهر 3 إلى 9 من خلال: التوقعات لشهر 10 هي مجرد المتوسط المتحرك للشهر قبل ذلك أي المتوسط المتحرك لشهر 9 م 9 20-33. وبالتالي (كما أننا لا يمكن أن يكون الطلب كسور) توقعات الشهر 10 هو 20. تطبيق التمهيد الأسي مع ثابت تمهيد من 0.3 نحصل على: كما كان قبل توقعات لشهر 10 هو مجرد متوسط للشهر 9 M 9 18.57 19 (كما نحن لا يمكن أن يكون الطلب كسور). لمقارنة اثنين من التوقعات نحسب متوسط الانحراف التربيعي (مسد). إذا قمنا بذلك نجد أنه بالنسبة للمتوسط المتحرك والمتوسط المتحرك الأسي مع ثابت التمهيد 0.3 بشكل عام فإننا نرى أن المتوسط المتحرك لمدة ثلاثة أشهر يبدو أنه يعطي أفضل التوقعات قبل شهر واحد كما أن لديه مسد أقل. وبالتالي نحن نفضل توقعات 20 التي تم إنتاجها من قبل المتوسط المتحرك لمدة ثلاثة أشهر. التنبؤ مثال 1991 امتحان أوغ ويبين الجدول أدناه الطلب على علامة تجارية معينة من جهاز الفاكس في متجر في كل من الأشهر الاثني عشر الماضية. احسب المتوسط المتحرك لمدة أربعة أشهر للأشهر من 4 إلى 12. ما هي توقعاتك للطلب في الشهر 13 تطبيق التمهيد الأسي مع ثابت التمهيد 0.2 لاستخلاص توقعات للطلب في الشهر 13. أي من اثنين من التوقعات في الشهر 13 هل تفضل ولماذا العوامل الأخرى التي لا تؤخذ في الاعتبار في الحسابات أعلاه قد تؤثر على الطلب على جهاز الفاكس في الشهر 13 ويعطى المتوسط المتحرك لمدة أربعة أشهر للأشهر 4 إلى 12 بواسطة: m 4 (23 19 15 12) 4 17،25 م 5 (27 23 19 15) 4 21 م 6 (30 27 23 19) 4 24،75 م 7 (32 30 27 23) 4 28 م 8 (33 32 30 27) 4 30،5 م 9 (37 33 32 30) 4 33 m 10 (41 37 33 32) 4 35.75 m 11 (49 41 37 33) 4 40 m 12 (58 49 41 37) 4 46.25 التوقعات لشهر 13 هي فقط المتوسط المتحرك للشهر قبل ذلك أي المتوسط المتحرك في الشهر 12 م 12 46.25. وبالتالي (كما أننا لا يمكن أن يكون الطلب كسور) توقعات لشهر 13 هو 46. تطبيق تمهيد الأسي مع ثابت تمهيد من 0.2 نحصل على: كما هو الحال قبل توقعات لشهر 13 هو مجرد متوسط للشهر 12 M 12 38.618 39 (كما نحن لا يمكن أن يكون الطلب كسور). لمقارنة اثنين من التوقعات نحسب متوسط الانحراف التربيعي (مسد). إذا قمنا بذلك نجد أنه بالنسبة للمتوسط المتحرك والمتوسط المتحرك الأسي مع ثابت التمهيد 0.2 بشكل عام فإننا نرى أن المتوسط المتحرك لمدة أربعة أشهر يبدو أنه يعطي أفضل التوقعات قبل شهر واحد كما أن لديه مسد أقل. وبالتالي فإننا نفضل توقعات 46 التي تم إنتاجها من قبل المتوسط المتحرك لمدة أربعة أشهر. التغيرات الموسمية الطلب على الأسعار الإعلان، على حد سواء هذه العلامة التجارية وغيرها من العلامات التجارية الوضع الاقتصادي العام التكنولوجيا الجديدة مثال على التنبؤ 1989 امتحان أوغ ويبين الجدول أدناه الطلب على ماركة معينة من فرن الميكروويف في متجر في كل من الأشهر الاثني عشر الماضية. احسب المتوسط المتحرك لمدة ستة أشهر لكل شهر. ماذا سيكون توقعاتك للطلب في الشهر 13 تطبيق تمهيد الأسي مع ثابت تجانس 0.7 لاستخلاص توقعات للطلب في الشهر 13. أي من اثنين من التوقعات لشهر 13 هل تفضل ولماذا الآن لا يمكننا حساب ستة حتى نحصل على 6 ملاحظات على الأقل - أي أننا لا نستطيع حساب هذا المتوسط إلا من الشهر 6 فصاعدا. ومن هنا يكون لدينا: m 6 (34 32 30 29 31 27) 6 30.50 م 7 (36 34 32 30 29 31) 6 32.00 م 8 (35 36 34 32 30 29) 6 32.67 m 9 (37 35 36 34 32 30) 6 34.00 m 10 (39 37 35 36 34 32) 6 35.50 m 11 (40 39 37 35 36 34) 6 36.83 m 12 (42 40 39 37 35 36) 6 38.17 إن توقعات الشهر 13 هي فقط المتوسط المتحرك ل شهر قبل ذلك أي المتوسط المتحرك لشهر 12 م 12 38.17. وبالتالي (كما أننا لا يمكن أن يكون الطلب كسور) توقعات لشهر 13 هو 38. تطبيق تمهيد الأسي مع ثابت تمهيد من 0.7 نحصل على: نقل متوسط التنبؤ مقدمة. كما قد تخمن أننا نبحث في بعض من أكثر الأساليب بدائية للتنبؤ. ولكن نأمل أن تكون هذه مقدمة مفيدة على الأقل لبعض قضايا الحوسبة المتعلقة بتنفيذ التنبؤات في جداول البيانات. في هذا السياق سوف نستمر من خلال البدء في البداية والبدء في العمل مع توقعات المتوسط المتحرك. نقل متوسط التوقعات. الجميع على دراية بتحرك توقعات المتوسط بغض النظر عما إذا كانوا يعتقدون أنهم. جميع طلاب الجامعات القيام بها في كل وقت. فكر في درجاتك االختبارية في الدورة التي ستحصل فيها على أربعة اختبارات خالل الفصل الدراسي. لنفترض أنك حصلت على 85 في الاختبار الأول. ما الذي يمكن أن تتنبأ به لنتيجة الاختبار الثانية ما رأيك بأن معلمك سوف يتنبأ بنتيجة الاختبار التالية ما رأيك في أن أصدقائك قد يتنبأون بنتيجة الاختبار التالية ما رأيك في توقع والديك لنتيجة الاختبار التالية بغض النظر عن كل بلابينغ كنت قد تفعل لأصدقائك وأولياء الأمور، هم ومعلمك من المرجح جدا أن نتوقع منك الحصول على شيء في مجال 85 كنت حصلت للتو. حسنا، الآن دعونا نفترض أنه على الرغم من الترويج الذاتي الخاص بك إلى أصدقائك، وكنت أكثر من تقدير نفسك والشكل يمكنك دراسة أقل للاختبار الثاني وحتى تحصل على 73. الآن ما هي جميع المعنيين وغير مدرك الذهاب إلى توقع أن تحصل على الاختبار الثالث هناك اثنين من المرجح جدا النهج بالنسبة لهم لوضع تقدير بغض النظر عما إذا كانوا سوف تقاسمها معك. قد يقولون لأنفسهم، هذا الرجل هو دائما تهب الدخان حول ذكائه. هيس الذهاب للحصول على آخر 73 إذا هيس محظوظا. ربما كان الوالدان يحاولان أن يكونا أكثر داعما ويقولان: كوتيل، حتى الآن حصلت على 85 و 73، لذلك ربما يجب أن تحصل على حوالي (85 73) 2 79. أنا لا أعرف، ربما لو كنت أقل من الحفلات و ويرنت يهتز في كل مكان في العالم، وإذا كنت بدأت تفعل الكثير من الدراسة يمكن أن تحصل على أعلى score. quot كل من هذه التقديرات تتحرك في الواقع متوسط التوقعات. الأول يستخدم فقط أحدث درجاتك للتنبؤ بأدائك المستقبلي. وهذا ما يطلق عليه توقعات المتوسط المتحرك باستخدام فترة واحدة من البيانات. والثاني هو أيضا متوسط التوقعات المتحركة ولكن باستخدام فترتين من البيانات. دعونا نفترض أن كل هؤلاء الناس خرق على العقل العظيم لديك نوع من سكران قبالة لكم وتقرر أن تفعل بشكل جيد على الاختبار الثالث لأسباب خاصة بك ووضع درجة أعلى أمام كوتاليسكوت الخاص بك. كنت تأخذ الاختبار ودرجاتك هو في الواقع 89 الجميع، بما في ذلك نفسك، وأعجب. حتى الآن لديك الاختبار النهائي للفصل الدراسي القادمة وكالمعتاد كنت تشعر بالحاجة إلى غواد الجميع في جعل توقعاتهم حول كيف ستفعل على الاختبار الأخير. حسنا، نأمل أن ترى هذا النمط. الآن، ونأمل أن تتمكن من رؤية هذا النمط. ما الذي تعتقده هو صافرة الأكثر دقة بينما نعمل. الآن نعود إلى شركة التنظيف الجديدة التي بدأتها شقيقة نصف استدارة دعا صافرة بينما نعمل. لديك بعض بيانات المبيعات السابقة التي يمثلها القسم التالي من جدول بيانات. نعرض البيانات لأول مرة لتوقعات المتوسط المتحرك لمدة ثلاث سنوات. يجب أن يكون إدخال الخلية C6 الآن يمكنك نسخ صيغة الخلية هذه إلى الخلايا الأخرى من C7 إلى C11. لاحظ كيف يتحرك المتوسط على أحدث البيانات التاريخية ولكنه يستخدم بالضبط ثلاث فترات أحدث متاحة لكل تنبؤ. يجب أن تلاحظ أيضا أننا لسنا بحاجة حقا لجعل التنبؤات للفترات الماضية من أجل تطوير أحدث توقعاتنا. وهذا يختلف بالتأكيد عن نموذج التجانس الأسي. وشملت إيف التنبؤات كوتاباستكوت لأننا سوف استخدامها في صفحة الويب التالية لقياس صحة التنبؤ. الآن أريد أن أعرض النتائج المماثلة لمتوسطين توقعات المتوسط المتحرك. يجب أن يكون إدخال الخلية C5 الآن يمكنك نسخ صيغة الخلية هذه إلى الخلايا الأخرى من C6 إلى C11. لاحظ كيف الآن فقط اثنين من أحدث القطع من البيانات التاريخية تستخدم لكل التنبؤ. مرة أخرى لقد قمت بتضمين التنبؤات اقتباسا لأغراض التوضيح واستخدامها لاحقا في التحقق من صحة التوقعات. بعض الأمور الأخرى التي من الأهمية أن تلاحظ. وبالنسبة للمتوسط المتحرك للمتوسط m، لا يتوقع إلا أن تستخدم معظم قيم البيانات الأخيرة في التنبؤ. لا شيء آخر ضروري. وبالنسبة للتنبؤ المتوسط المتحرك للمتوسط m، عند التنبؤ بالتنبؤات، لاحظ أن التنبؤ الأول يحدث في الفترة m 1. وستكون هاتان المسألتان مهمتين جدا عند تطوير الشفرة. تطوير المتوسط المتحرك المتحرك. الآن نحن بحاجة إلى تطوير رمز لتوقعات المتوسط المتحرك التي يمكن استخدامها أكثر مرونة. تتبع التعليمات البرمجية. لاحظ أن المدخلات هي لعدد الفترات التي تريد استخدامها في التوقعات ومصفوفة القيم التاريخية. يمكنك تخزينه في أي المصنف الذي تريده. وظيفة موفينغافيراج (تاريخي، نومبروفريودس) كما واحد إعلان وتهيئة المتغيرات ديم البند كما متغير عداد خافت كما عدد صحيح تراكم خافت كما أحادي ديم تاريخي الحجم كما عدد صحيح تهيئة المتغيرات عداد 1 تراكم 0 تحديد حجم الصفيف التاريخي تاريخ سيز التاريخية. الكونت كونتر 1 إلى نومبروفريودس تجميع العدد المناسب من أحدث القيم التي تمت ملاحظتها سابقا تراكم تراكم تاريخي (تاريخي - عدد نومبريوفريودس عداد) موفينغافيراج تراكوم نومبروفريودس سيتم شرح التعليمات البرمجية في الصف. تريد وضع الدالة على جدول البيانات بحيث تظهر نتيجة الحساب حيث ترغب في اتباع أساليب سلسلة الوقت. أساليب التسلسل الزمني هي تقنيات إحصائية تستخدم البيانات التاريخية المتراكمة على مدى فترة من الزمن. تفترض طرق السلاسل الزمنية أن ما حدث في الماضي سيستمر في المستقبل. وكما توحي السلسلة الزمنية للاسم، فإن هذه الأساليب تربط التنبؤ بعامل واحد فقط - الوقت. وهي تشمل المتوسط المتحرك، والتجانس الأسي، وخط الاتجاه الخطي، وهي من بين الأساليب الأكثر شعبية للتنبؤ قصير المدى بين شركات الخدمات والتصنيع. وتفترض هذه الأساليب أن أنماط أو اتجاهات تاريخية يمكن التعرف عليها مع مرور الوقت ستكرر نفسها. المتوسط المتحرك يمكن أن تكون توقعات السلاسل الزمنية بسيطة مثل استخدام الطلب في الفترة الحالية للتنبؤ بالطلب في الفترة المقبلة. ويسمى هذا أحيانا توقعات ساذجة أو بديهية. 4 على سبيل المثال، إذا كان الطلب هو 100 وحدة هذا الأسبوع، والتوقعات لأسابيع الطلب المقبل هو 100 وحدة إذا كان الطلب تبين أن 90 وحدة بدلا من ذلك، ثم الطلب أسابيع التالية هو 90 وحدة، وهلم جرا. هذا النوع من طريقة التنبؤ لا يأخذ في الاعتبار سلوك الطلب التاريخي فإنه يعتمد فقط على الطلب في الفترة الحالية. وهو يتفاعل مباشرة مع حركة عادية، عشوائية في الطلب. وتستخدم طريقة المتوسط المتحرك البسيط عدة قيم للطلب خلال الماضي القريب لوضع توقعات. وهذا يميل إلى إبطاء أو إبطال الزيادات العشوائية والنقصان في التوقعات التي تستخدم فترة واحدة فقط. إن المتوسط المتحرك البسيط مفيد للتنبؤ بالطلب المستقر ولا يظهر أي سلوك واضح في الطلب، مثل الاتجاه أو النمط الموسمي. يتم حساب المتوسطات المتحركة لفترات محددة، مثل ثلاثة أشهر أو خمسة أشهر، وهذا يتوقف على مدى رغبة المتنبأ في تسهيل بيانات الطلب. وكلما طالت فترة المتوسط المتحرك، كلما كان الأمر أكثر سلاسة. صيغة حساب المتوسط المتحرك البسيط هي حساب متوسط متحرك بسيط تقوم شركة توريد الورق الفوري بتزويد وتوريد اللوازم المكتبية إلى الشركات والمدارس والوكالات داخل دائرة نصف قطرها 50 ميلا من مستودعها. إن أعمال توريد المكاتب تنافسية، والقدرة على تقديم الطلبات فورا هي عامل في الحصول على عملاء جدد والحفاظ على العملاء القدامى. (عادة ما تطلب المكاتب عدم تشغيلها عند انخفاض الإمدادات، ولكن عندما تنفد تماما، ونتيجة لذلك، فإنها تحتاج إلى أوامرها على الفور.) مدير الشركة يريد أن يكون بعض السائقين كافية والمركبات المتاحة لتسليم أوامر على الفور و لديهم مخزون كاف في المخزون. ولذلك، فإن المدير يريد أن يكون قادرا على التنبؤ بعدد الطلبات التي ستحدث خلال الشهر المقبل (أي للتنبؤ الطلب على الولادات). من سجلات أوامر التسليم، تراكمت الإدارة البيانات التالية خلال الأشهر ال 10 الماضية، والتي تريد حساب المتوسطات المتحركة 3 و 5 أشهر. دعونا نفترض أن هذا هو نهاية تشرين الأول / أكتوبر. والتنبؤ الناتج عن المتوسط المتحرك لمدة 3 أشهر أو 5 أشهر هو عادة للشهر التالي بالتسلسل، وهو في هذه الحالة هو نوفمبر. ويحسب المتوسط المتحرك من الطلب على الأوامر خلال الأشهر الثلاثة السابقة بالتسلسل وفقا للمعادلة التالية: يحسب المتوسط المتحرك لمدة 5 أشهر من بيانات 5 أشهر السابقة من بيانات الطلب على النحو التالي: الشهران 3 و 5 أشهر يبين الجدول التالي توقعات المتوسط المتحرك لجميع أشهر بيانات الطلب. في الواقع، فإن توقعات نوفمبر فقط استنادا إلى الطلب الشهري الأخير سيتم استخدامها من قبل المدير. ومع ذلك، فإن التوقعات السابقة للأشهر السابقة تسمح لنا بمقارنة التوقعات مع الطلب الفعلي لمعرفة مدى دقة طريقة التنبؤ - أي مدى نجاحها. المتوسطات الثلاثة والخمسة أشهر يميل كل من التنبؤات المتحركة المتوسطة في الجدول أعلاه إلى إبطاء التباين الذي يحدث في البيانات الفعلية. ويمكن ملاحظة تأثير التمهيد هذا في الشكل التالي الذي تم فيه فرض متوسطات لمدة 3 أشهر و 5 أشهر على رسم بياني للبيانات الأصلية: إن المتوسط المتحرك لمدة 5 أشهر في الشكل السابق يزيل التقلبات إلى حد أكبر من المتوسط المتحرك لمدة 3 أشهر. غير أن متوسط الأشهر الثلاثة يعكس بصورة أوثق أحدث البيانات المتاحة لمدير الإمدادات المكتبية. وبصفة عامة، فإن التنبؤات باستخدام المتوسط المتحرك لفترة أطول أبطأ من أجل الاستجابة للتغيرات الأخيرة في الطلب مقارنة بتلك التي أجريت باستخدام متوسطات متحركة أقصر. فالفترات الإضافية للبيانات تضعف السرعة التي تستجيب بها التوقعات. وكثيرا ما يتطلب تحديد العدد المناسب من الفترات لاستخدامها في توقعات المتوسط المتحرك قدرا من التجارب التجريبية والخطأ. أما عيب أسلوب المتوسط المتحرك فهو أنه لا يتفاعل مع التغيرات التي تحدث لسبب ما، مثل الدورات والتأثيرات الموسمية. وعادة ما يتم تجاهل العوامل التي تسبب التغيرات. وهي في الأساس طريقة ميكانيكية، تعكس البيانات التاريخية بطريقة متسقة. ومع ذلك، فإن طريقة المتوسط المتحرك تتميز بكونها سهلة الاستخدام وسريعة وغير مكلفة نسبيا. وبصفة عامة، يمكن لهذه الطريقة أن توفر توقعات جيدة على المدى القصير، ولكن لا ينبغي دفعها بعيدا جدا في المستقبل. المتوسط المتحرك المرجح يمكن تعديل طريقة المتوسط المتحرك لتعكس تقلبات البيانات بشكل أوثق. في طريقة المتوسط المتحرك المرجح، يتم تعيين الأوزان إلى أحدث البيانات وفقا للمعادلة التالية: يبدو أن بيانات الطلب لخدمات الكمبيوتر بيإم (المبينة في الجدول الخاص بالمثال 10.3) تتبع اتجاها خطييا متزايدا. وتريد الشركة حساب خط اتجاه خطي لمعرفة ما إذا كان أكثر دقة من التجانس الأسي وتوقعات التمهيد الأسي المعدلة التي تم تطويرها في المثالين 10.3 و 10.4. وفيما يلي القيم المطلوبة لحسابات المربعات الصغرى: باستخدام هذه القيم، تحسب معلمات خط الاتجاه الخطي على النحو التالي: ولذلك، فإن معادلة خط الاتجاه الخطي هي لحساب التنبؤات للفترة 13، والسماح x 13 في الخطية خط الاتجاه: يظهر الرسم البياني التالي خط الاتجاه الخطي مقارنة مع البيانات الفعلية. ويبدو أن خط الاتجاه يعكس بشكل وثيق البيانات الفعلية - أي أن يكون مناسبا - ومن ثم سيكون نموذجا جيدا للتنبؤ بهذه المشكلة. ومع ذلك، فإن عيب خط الاتجاه الخطي هو أنه لن يتكيف مع تغيير في الاتجاه، حيث أن الأساليب التنبؤ الأسي التنبؤات وهذا هو، فمن المفترض أن جميع التوقعات المستقبلية سوف تتبع خط مستقيم. هذا يحد من استخدام هذه الطريقة إلى إطار زمني أقصر الذي يمكن أن تكون مؤكدة نسبيا أن الاتجاه لن يتغير. التسويات الموسمية نمط موسمي هو زيادة متكررة وانخفاض في الطلب. العديد من العناصر الطلب تظهر السلوك الموسمية. وتتبع مبيعات الملابس أنماطا موسمية سنوية، حيث يزداد الطلب على الملابس الدافئة في الخريف والشتاء ويتراجع في فصلي الربيع والصيف مع زيادة الطلب على الملابس الباردة. الطلب على العديد من البنود التجزئة، بما في ذلك اللعب والمعدات الرياضية والملابس والأجهزة الإلكترونية، والهامب، والديك الرومي، والنبيذ، والفاكهة، وزيادة خلال موسم الأعياد. زيادة الطلب بطاقة معايدة جنبا إلى جنب مع أيام خاصة مثل عيد الحب وعيد الأم. ويمكن أيضا أن تحدث الأنماط الموسمية على أساس شهري أو أسبوعي أو حتى يومي. بعض المطاعم لديها ارتفاع الطلب في المساء مما كان عليه في الغداء أو في عطلة نهاية الأسبوع بدلا من أيام الأسبوع. حركة المرور - وبالتالي المبيعات - في مراكز التسوق تلتقط يومي الجمعة والسبت. هناك عدة طرق لتعكس الأنماط الموسمية في توقعات سلسلة زمنية. سنصف إحدى الطرق البسيطة باستخدام عامل موسمي. والعامل الموسمي هو قيمة رقمية تضرب في التوقعات العادية للحصول على توقعات معدلة موسميا. طريقة واحدة لتطوير الطلب على العوامل الموسمية هي تقسيم الطلب على كل فترة موسمية حسب الطلب السنوي الإجمالي، وفقا للمعادلة التالية: العوامل الموسمية الناتجة بين 0 و 1.0 هي في الواقع نسبة من إجمالي الطلب السنوي المخصص ل في كل موسم. وتضاعف هذه العوامل الموسمية في الطلب المتوقع سنويا لإعطاء التنبؤات المعدلة لكل موسم. حساب توقعات مع التعديلات الموسمية تنمو مزارع عظام الترقب من بيع الديك الرومي إلى شركة لتجهيز اللحوم على مدار السنة. ومع ذلك، من الواضح موسم الذروة خلال الربع الرابع من العام، من أكتوبر إلى ديسمبر. وقد شهدت مزارع عظمون الطلب على الديوك الرومي على مدى السنوات الثلاث الماضية المبينة في الجدول التالي: ولأن لدينا ثلاث سنوات من بيانات الطلب، يمكننا حساب العوامل الموسمية عن طريق قسمة الطلب الفصلي الكلي على مدى ثلاث سنوات من الطلب الكلي على مدى السنوات الثلاث : بعد ذلك، نريد مضاعفة الطلب المتوقع للعام القادم، 2000، من خلال كل من العوامل الموسمية للحصول على الطلب المتوقع لكل ربع سنة. ولتحقيق ذلك، نحتاج إلى توقعات الطلب لعام 2000. وفي هذه الحالة، وبما أن بيانات الطلب الواردة في الجدول يبدو أنها تظهر اتجاها متزايدا بشكل عام، فإننا نحسب خط اتجاه خطي لثلاث سنوات من البيانات الواردة في الجدول للحصول على الخام تقديرات التوقعات: وهكذا، فإن التوقعات لعام 2000 هي 58.17، أو 58.170 الديك الرومي. وباستخدام هذه التوقعات السنوية للطلب، فإن التنبؤات المعدلة موسميا، سف i، لعام 2000 هي مقارنة هذه التوقعات الفصلية بقيم الطلب الفعلية في الجدول، ويبدو أنها تقديرات توقعات جيدة نسبيا، مما يعكس كلا من التغيرات الموسمية في البيانات و الاتجاه التصاعدي العام. 10-12. كيف تكون طريقة المتوسط المتحرك مشابهة للتجانس الأسي 10-13. ما تأثير على نموذج تمهيد الأسي وزيادة ثابت تمهيد لديها 10-14. كيف يختلف تعديل الأسي تعديل تختلف عن الأسي تمهيد 10-15. ما يحدد اختيار ثابت تمهيد للاتجاه في تعديل نموذج الأسي تعديل 10-16. وفي أمثلة الفصل لأساليب السلاسل الزمنية، كان من المفترض دائما أن تكون توقعات البداية هي نفس الطلب الفعلي في الفترة الأولى. اقتراح طرق أخرى يمكن أن تكون مشتقة التنبؤ البداية في الاستخدام الفعلي. 10-17. كيف يختلف نموذج التنبؤ بالخط الاتجاهي الخطي عن نموذج الانحدار الخطي للتنبؤ 10-18. من نماذج السلاسل الزمنية المعروضة في هذا الفصل، بما في ذلك المتوسط المتحرك والمتوسط المتحرك المرجح، والتجانس الأسي وتعديل الأسي المعدل، وخط الاتجاه الخطي، أي واحد تعتبره أفضل لماذا 10-19. ما هي المزايا التي عدلت التجانس الأسي على خط الاتجاه الخطي للطلب المتوقع الذي يظهر اتجاها 4 K. B. كاهن وجيه ت. منتزر، التنبؤ في المستهلك والأسواق الصناعية، مجلة توقعات الأعمال 14، لا. 2 (صيف 1995): 21-28.
Comments
Post a Comment