متوسط - إحصاءات المرجح الحركة ،


المتوسطات المتحركة المتوسطات المتحركة مع مجموعات البيانات التقليدية القيمة المتوسطة غالبا ما تكون الأولى، وإحدى الإحصاءات الموجزة الأكثر فائدة لحساب. وعندما تكون البيانات في شكل سلسلة زمنية، فإن متوسط ​​السلسلة مقياس مفيد، ولكنه لا يعكس الطبيعة الدينامية للبيانات. وغالبا ما تكون القيم المتوسطة المحسوبة على فترات قصيرة، إما قبل الفترة الحالية أو تركزت على الفترة الحالية، أكثر فائدة. لأن هذه القيم المتوسطة سوف تختلف، أو تتحرك، كما تتحرك الفترة الحالية من الوقت ر 2، ر 3. الخ أنها تعرف باسم المتوسطات المتحركة (ماس). المتوسط ​​المتحرك البسيط هو (عادة) المتوسط ​​غير المرجح لقيم k السابقة. المتوسط ​​المتحرك المرجح ألساسا هو نفس المتوسط ​​المتحرك البسيط، ولكن مع المساهمات في المتوسط ​​المرجح بقربها من الوقت الحالي. لأنه لا يوجد واحد، ولكن سلسلة كاملة من المتوسطات المتحركة لأي سلسلة معينة، ومجموعة من ماس يمكن أن تكون نفسها رسمت على الرسوم البيانية، وتحليلها على شكل سلسلة، وتستخدم في النمذجة والتنبؤ. ويمكن بناء مجموعة من النماذج باستخدام المتوسطات المتحركة، وتعرف هذه النماذج بنماذج ما. إذا تم الجمع بين هذه النماذج ونماذج الانحدار الذاتي (أر)، فإن النماذج المركبة الناتجة تعرف باسم نماذج أرما أو أريما (I هي متكاملة). المتوسطات المتحركة البسيطة منذ يمكن اعتبار سلسلة زمنية كمجموعة من القيم، t 1،2،3،4، n يمكن حساب متوسط ​​هذه القيم. إذا افترضنا أن n كبير جدا، ونحن نختار عدد صحيح k الذي هو أصغر بكثير من n. يمكننا حساب مجموعة من متوسطات الفدرات أو متوسطات متحركة بسيطة (للترتيب k): يمثل كل قياس متوسط ​​قيم البيانات على مدى فاصل من ملاحظات k. لاحظ أن أول ما ممكن من النظام gt0 k هو أن ل t ك. وبوجه أعم يمكننا إسقاط الجزء الإضافي الإضافي في التعبيرات أعلاه والكتابة: وهذا يشير إلى أن المتوسط ​​المقدر في الوقت t هو المتوسط ​​البسيط للقيمة الملحوظة في الوقت t والخطوات السابقة k -1 الزمنية. إذا تم تطبيق الأوزان التي تقلل من مساهمة الملاحظات التي هي أبعد من ذلك في الوقت المناسب، ويقال أن المتوسط ​​المتحرك تمهيد أضعافا مضاعفة. وغالبا ما تستخدم المتوسطات المتحركة كشكل من أشكال التنبؤ، حيث القيمة المقدرة لسلسلة في الوقت t 1، S t1. يؤخذ على أنه ما للفترة حتى تصل إلى الوقت t. مثلا يستند تقدير اليوم إلى متوسط ​​القيم المسجلة سابقا حتى يوم الأمس (بالنسبة للبيانات اليومية). ويمكن اعتبار المتوسطات المتحركة البسيطة شكلا من أشكال التمهيد. في المثال الموضح أدناه، تم تعزيز مجموعة بيانات تلوث الهواء المبينة في مقدمة هذا الموضوع بمتوسط ​​متحرك لمدة 7 أيام (ما)، موضح هنا باللون الأحمر. كما يمكن أن يرى، خط ما ينعم القمم وأحواض في البيانات ويمكن أن تكون مفيدة جدا في تحديد الاتجاهات. وتعني الصيغة القياسية للحساب الآجل أن نقاط البيانات K -1 الأولى ليس لها قيمة ما، ولكن بعد ذلك تمتد الحسابات إلى نقطة البيانات النهائية في السلسلة. PM10 القيم المتوسطة اليومية، غرينتش المصدر: شبكة لندن لجودة الهواء، londonair. org. uk سبب واحد لحساب المتوسطات المتحركة البسيطة بالطريقة الموصوفة هو أنه يمكن القيم التي سيتم حسابها لجميع الفترات الزمنية من الزمن تك حتى الوقت الحاضر، و كما يتم الحصول على قياس جديد للوقت ر 1، و ما للوقت ر 1 يمكن أن تضاف إلى مجموعة تحسب بالفعل. وهذا يوفر إجراء بسيطا لمجموعات البيانات الديناميكية. ومع ذلك، هناك بعض القضايا مع هذا النهج. ومن المعقول القول بأن القيمة المتوسطة خلال الفترات الثلاث الأخيرة، على سبيل المثال، ينبغي أن تكون موجودة في الوقت t -1، وليس الوقت t. وبالنسبة إلى درجة الماجستير على مدى عدد من الفترات ربما ربما ينبغي أن يكون موجودا في منتصف النقطة بين فترتين زمنيتين. حل لهذه المسألة هو استخدام الحسابات ما محورها، حيث ما في الوقت t هو متوسط ​​مجموعة متماثلة من القيم حول ر. وعلى الرغم من مزاياه الواضحة، فإن هذا النهج لا يستخدم عموما لأنه يتطلب توافر البيانات للأحداث المقبلة، وهو ما قد لا يكون كذلك. في الحالات التي يكون فيها التحليل بالكامل لسلسلة حالية، قد يكون استخدام ماس المركزة أفضل. ويمكن اعتبار المتوسطات المتحركة البسيطة شكلا من أشكال التمهيد، وإزالة بعض المكونات عالية التردد من سلسلة زمنية وتسليط الضوء على الاتجاهات (ولكن ليس إزالتها) بطريقة مماثلة للمفهوم العام للتصفية الرقمية. في الواقع، المتوسطات المتحركة هي شكل من أشكال المرشحات الخطية. ومن الممكن تطبيق حساب متوسط ​​متحرك لسلسلة تم تمهيدها بالفعل، أي تمهيد أو تصفية سلسلة سلسة بالفعل. على سبيل المثال، مع متوسط ​​متحرك من النظام 2، يمكننا أن نعتبر أنه يحسب باستخدام الأوزان، وبالتالي فإن ما في x 2 0.5 × 1 0.5 × 2. وبالمثل، فإن ما في x 3 0.5 × 2 0.5 × 3. إذا نحن (0.5 × 0.5 0.5 × 0.5) 0.5 (0.5 × 2 0.5 × 3) 0.25 × 1 0.5 × 2 0.25 × 3 أي الترشيح ذي المرحلتين (أو التفاف) قد أنتج متوسط ​​متحرك متماثل مرجح، مع أوزان. يمكن أن تنتج العديد من المحولات التحويلية متوسطات متحركه معززة جدا، وبعضها تم العثور على استخدام معين في المجالات المتخصصة، كما هو الحال في حسابات التأمين على الحياة. يمكن استخدام المتوسطات المتحركة لإزالة التأثيرات الدورية إذا تم حسابها مع طول التواتر كما هو معروف. على سبيل المثال، مع التغيرات الشهرية في البيانات الموسمية يمكن في كثير من الأحيان إزالتها (إذا كان هذا هو الهدف) من خلال تطبيق متماثل المتوسط ​​المتحرك لمدة 12 شهرا مع جميع الشهور المرجحة بالتساوي، باستثناء الأولى والأخيرة التي يتم وزنها بنسبة 12. هذا لأن هناك سوف يكون 13 شهرا في النموذج المتماثل (الوقت الحالي، ر - 6 أشهر). وينقسم المجموع إلى 12. ويمكن اعتماد إجراءات مماثلة لأي دورية محددة جيدا. المتوسطات المتحركة المرجح أضعافا مضاعفة (إوما) مع صيغة المتوسط ​​المتحرك البسيط: جميع المشاهدات متساوية بالتساوي. إذا اتصلنا هذه الأوزان متساوية، ألفا ر. فإن كل وزن من الأوزان k يساوي 1 ك. وبالتالي فإن مجموع الأوزان سيكون 1، والصيغة ستكون: لقد رأينا بالفعل أن تطبيقات متعددة من هذه العملية يؤدي إلى الأوزان متباينة. مع المتوسطات المتحركة المرجح أضعافا مضاعفة الإسهام في القيمة المتوسطة من الملاحظات التي هي أكثر إزالتها في الوقت يتم تقليل مداولات، مما يؤكد على الأحداث الأخيرة (المحلية). في الأساس، يتم عرض معلمة التمهيد 0 ألف طن lt1، وتنقح الصيغة إلى: تكون الصيغة المتماثلة لهذه الصيغة بالشكل التالي: إذا تم تحديد الأوزان في النموذج المتماثل كعبارات لشروط التوسع ذي الحدين، (1212) 2q. فإنها سوف تلخص 1، وكما ف يصبح كبيرا، وتقريب توزيع عادي. هذا هو شكل من أشكال الترجيح النواة، مع الحدين تعمل بوصفها وظيفة النواة. التلازم المرحلة الثانية وصفها في القسم الفرعي السابق هو على وجه التحديد هذا الترتيب، مع س 1، مما أسفر عن الأوزان. في التجانس الأسي فمن الضروري استخدام مجموعة من الأوزان التي مجموع إلى 1 والتي تقلل في حجم هندسيا. وعادة ما تكون الأوزان المستخدمة من النموذج: لإظهار أن هذه الأوزان توازي 1، فكر في توسيع 1 كمجموعة. يمكننا كتابة وتوسيع التعبير بين قوسين باستخدام الصيغة ذات الحدين (1- x) ص. حيث x (1) و p -1، مما يعطي: ثم يوفر نموذجا من المتوسط ​​المتحرك المرجح للنموذج: يمكن كتابة هذا الملخص كعلاقة تكرار: مما يبسط الحساب بشكل كبير، ويتجنب مشكلة أن نظام الترجيح يجب أن يكون بدقة لانهائية للأوزان لتلخص 1 (لقيم صغيرة من ألفا، وهذا هو عادة ليست هي القضية). تختلف الرموز المستخدمة من قبل مؤلفين مختلفين. يستخدم البعض الحرف S للإشارة إلى أن الصيغة هي في الأساس متغير أملس، وكتب: في حين أن أدبيات نظرية التحكم غالبا ما تستخدم Z بدلا من S للقيم المرجحة أو الممهدة أضعافا مضاعفة (انظر، على سبيل المثال، لوكاس و ساكوتشي، 1990، LUC1 ، وموقع نيست لمزيد من التفاصيل وأمثلة العمل). الصيغ المذكورة أعلاه مستمدة من عمل روبرتس (1959، ROB1)، ولكن هنتر (1986، HUN1) يستخدم تعبيرا عن النموذج: الذي قد يكون أكثر ملاءمة للاستخدام في بعض إجراءات التحكم. مع ألفا 1 متوسط ​​التقدير هو ببساطة قيمته المقاسة (أو قيمة عنصر البيانات السابق). مع 0.5 التقدير هو المتوسط ​​المتحرك البسيط للقياسات الحالية والسابقة. في نماذج التنبؤ القيمة، S t. وكثيرا ما يستخدم كقيمة تقديرية أو توقعية للفترة الزمنية القادمة، أي كالتقدير ل x في الوقت t 1. وهكذا لدينا: وهذا يدل على أن القيمة المتوقعة في الوقت t 1 هي مزيج من المتوسط ​​المتحرك المرجح أضعافا سابقا بالإضافة إلى مكون يمثل خطأ التنبؤ المرجح، إبسيلون. في الوقت t. وبافتراض وجود سلسلة زمنية والتنبؤ مطلوب، يلزم وجود قيمة ألفا. ويمكن تقدير ذلك من البيانات الموجودة عن طريق تقييم مجموع أخطاء التنبؤ التربيعية التي يتم الحصول عليها مع قيم متفاوتة ألفا لكل t 2،3. (1) في تطبيقات التحكم، تكون قيمة ألفا مهمة في ذلك يستخدم في تحديد حدود التحكم العليا والسفلى، ويؤثر على متوسط ​​طول التشغيل (أرل) المتوقع قبل أن يتم كسر حدود السيطرة هذه (على افتراض أن السلاسل الزمنية تمثل مجموعة من المتغيرات المستقلة العشوائية الموزعة بشكل مماثل مع التباين المشترك). وفي ظل هذه الظروف يكون التباين في إحصائية التحكم: (لوكاس أند ساكوتشي، 1990): وعادة ما تحدد حدود المراقبة كمضاعفات ثابتة لهذا التباين المتناظر، على سبيل المثال. - 3 مرات الانحراف المعياري. إذا افترض 0.25، على سبيل المثال، ويفترض أن البيانات التي يجري رصدها يكون توزيع عادي، N (0،1)، عندما تكون في السيطرة، ستكون حدود السيطرة - 1.134 وسوف تصل العملية إلى حد واحد أو حد آخر في 500 خطوة في المتوسط. لوكاس و ساكوتشي (1990 LUC1) تستمد أرلز لمجموعة واسعة من قيم ألفا وتحت مختلف الافتراضات باستخدام إجراءات ماركوف شين. وهي تقوم بتبويب النتائج، بما في ذلك توفير أرلس عندما يكون متوسط ​​عملية التحكم قد تم نقله من قبل بعض مضاعفات الانحراف المعياري. على سبيل المثال، مع التحول 0.5 مع ألفا 0.25 و أرل أقل من 50 خطوة الوقت. ومن المعروف أن النهج المذكورة أعلاه تمهيد الأسي واحد. حيث يتم تطبيق الإجراءات مرة واحدة على السلاسل الزمنية ومن ثم يتم إجراء عمليات التحليل أو التحكم على مجموعة البيانات التي تم تمريرها. إذا كانت مجموعة البيانات تشتمل على مكونات موسمية ومؤثرة، يمكن تطبيق التمهيد الأسي على مرحلتين أو ثلاث مراحل كوسيلة لإزالة (هذه النماذج بشكل صريح) (انظر كذلك القسم الخاص بالتنبؤ أدناه، ومثال نيست العامل). CHA1 شاتفيلد C (1975) تحليل سلسلة تايمز: النظرية والتطبيق. تشابمان أند هول، لندن HUN1 هنتر J S (1986) المتوسط ​​المتحرك المرجح أضعافا مضاعفة. J من كواليتي تيشنولوغي، 18، 203-210 LUC1 لوكاس J M، ساكوتشي M S (1990) المتوسط ​​المتحرك لأسفل متحكم في مخططات التحكم: الخصائص والتحسينات. تيشنوميتريكس، 32 (1)، 1-12 ROB1 روبرتس S W (1959) اختبارات التحكم في الرسم البياني استنادا إلى المتوسطات المتحركة الهندسية. تيشنوميتريكس، 1، 239-250What039s الفرق بين المتوسط ​​المتحرك والمتوسط ​​المتحرك المرجح يتم حساب المتوسط ​​المتحرك لفترة 5، استنادا إلى الأسعار أعلاه، باستخدام المعادلة التالية: استنادا إلى المعادلة أعلاه، فإن متوسط ​​السعر خلال الفترة المذكورة أعلاه 90.66. إن استخدام المتوسطات المتحركة هو طريقة فعالة للقضاء على تقلبات الأسعار القوية. والقيود الرئيسية هي أن نقاط البيانات من البيانات القديمة لا ترجح أي اختلاف عن نقاط البيانات بالقرب من بداية مجموعة البيانات. هذا هو المكان حيث تتحرك المتوسطات المرجحة في اللعب. وتحدد المتوسطات المرجحة ترجيح أثقل لنقاط بيانات أكثر حداثة لأنها أكثر صلة من نقاط البيانات في الماضي البعيد. وينبغي أن يزيد مجموع الترجيح إلى 1 (أو 100). وفي حالة المتوسط ​​المتحرك البسيط، يتم توزيع الأوزان بالتساوي، وهذا هو السبب في عدم ظهورها في الجدول أعلاه. سعر الإغلاق للمتوسطات المتحركة آبلويتد: الأساسيات على مر السنين، وجد الفنيون مشكلتين مع المتوسط ​​المتحرك البسيط. تكمن المشكلة الأولى في الإطار الزمني للمتوسط ​​المتحرك (ما). ويعتقد معظم المحللين الفنيين أن العمل السعر. فتح أو إغلاق سعر السهم، لا يكفي على أن تعتمد على التنبؤ بشكل صحيح شراء أو بيع إشارات العمل كروس ما. ولحل هذه المشكلة، يعين المحللون الآن مزيدا من الوزن لأحدث بيانات الأسعار باستخدام المتوسط ​​المتحرك الممتد أضعافا مضاعفة (إما). (مزيد من المعلومات في استكشاف المتوسط ​​المتحرك الموزون أضعاف.) مثال على سبيل المثال، باستخدام ما 10 أيام، فإن المحلل يأخذ سعر الإغلاق لليوم العاشر ويضاعف هذا الرقم قبل 10، في اليوم التاسع من تسعة، والثامنة يوم من قبل ثمانية وهلم جرا إلى أول من ماجستير. وبمجرد تحديد المجموع، يقوم المحلل بعد ذلك بتقسيم الرقم بإضافة المضاعفات. إذا قمت بإضافة مضاعفات المثال ما 10 أيام، فإن الرقم هو 55. ويعرف هذا المؤشر باسم المتوسط ​​المتحرك المرجح خطي. (للحصول على القراءة ذات الصلة، تحقق من المتوسطات المتحركة البسيطة جعل الاتجاهات الوقوف.) العديد من الفنيين مؤمنين بقوة في المتوسط ​​المتحرك السلس أضعافا (إما). وقد تم شرح هذا المؤشر في العديد من الطرق المختلفة التي يخلط بين الطلاب والمستثمرين على حد سواء. ولعل أفضل تفسير يأتي من جون ج. مورفيس التحليل الفني للأسواق المالية، (نشره معهد نيويورك المالي، 1999): يعالج المتوسط ​​المتحرك الممتد أضعافا مضاعفة المشاكل المرتبطة بالمتوسط ​​المتحرك البسيط. فأولا، يعين المتوسط ​​الملمس أضعافا أكبر وزنا أكبر للبيانات الأحدث. ولذلك، فهو متوسط ​​متحرك مرجح. ولكن في حين أنه يولي أهمية أقل لبيانات الأسعار الماضية، فإنه يشمل في حسابه جميع البيانات في حياة الصك. وبالإضافة إلى ذلك، يمكن للمستخدم ضبط الترجيح لإعطاء وزن أكبر أو أقل لسعر الأيام الأخيرة، والذي يضاف إلى نسبة مئوية من قيمة الأيام السابقة. ويضاف مجموع قيمتي النسبة المئوية إلى 100. على سبيل المثال، يمكن تعيين سعر الأيام الأخيرة على وزن 10 (10)، والذي يضاف إلى وزن الأيام السابقة 90 (.90). وهذا يعطي اليوم الأخير 10 من إجمالي الترجيح. هذا سيكون ما يعادل متوسط ​​20 يوما، من خلال إعطاء سعر الأيام الماضية قيمة أصغر من 5 (.05). الشكل 1: المتوسط ​​المتحرك الملمس أضعافا مضاعفة يظهر الرسم البياني أعلاه مؤشر ناسداك المركب من الأسبوع الأول في أغسطس 2000 إلى 1 يونيو 2001. كما ترون بوضوح، إما، والتي في هذه الحالة تستخدم بيانات سعر الإغلاق فوق لمدة تسعة أيام، لديها إشارات بيع محددة في 8 سبتمبر (تميزت لأسفل أسود لأسفل). وكان هذا هو اليوم الذي كسر فيه المؤشر دون مستوى 4000. يظهر السهم الأسود الثاني آخر أسفل الساق التي الفنيين كانوا يتوقعون فعلا. لم يتمكن ناسداك من توليد ما يكفي من حجم واهتمام من المستثمرين التجزئة لكسر 3000 علامة. ثم ينخفض ​​مرة أخرى إلى أسفل إلى أسفل في 1619.58 في ابريل 4. يتميز الاتجاه الصعودي 12 أبريل السهم. وهنا أغلق المؤشر عند 1،961.46، وبدأ الفنيون في رؤية مديري الصناديق المؤسسية بدءا من التقاط بعض الصفقات مثل سيسكو ومايكروسوفت وبعض القضايا المتعلقة بالطاقة. (قراءة مقالاتنا ذات الصلة: الانتقال المتوسط ​​المغلفات: تكرير أداة التداول الشعبي والمتوسط ​​المتحرك ترتد.) نوع من هيكل التعويض التي التحوط مديري الصناديق عادة توظيف في أي جزء من التعويض هو الأداء القائم. حماية ضد فقدان الدخل الذي قد يؤدي إلى وفاة المؤمن عليه. يتلقى المستفيد اسمه. مقياس للعلاقة بين التغير في الكمية المطلوبة من سلعة معينة وتغير في سعرها. السعر. إجمالي القيمة السوقية للدولار لكل من أسهم الشركة المعلقة. يتم احتساب القيمة السوقية عن طريق الضرب. فريكسيت قصيرة ل كوتشيفيش إكسيتكوت هو الفرنسية سبينوف من بريكسيت المدى، التي برزت عندما صوتت المملكة المتحدة ل. أمر وضعها مع وسيط يجمع بين ملامح وقف النظام مع تلك من أجل الحد. أمر وقف الحد سوف.

Comments

Popular posts from this blog

الأسهم خيارات مقطع 409a -

Tmus الأسهم ، خيارات

التجارة خيارات بأمان